Кристаллические тела - презентация. Кристаллические и аморфные тела - презентация Презентация по теме кристаллические и аморфные тела

Слайд 1

Кристаллические и аморфные тела
Поверхностное натяжение жидкостей

Слайд 2

Основные состояния вещества
Газообразное Жидкое Твердое Кристаллы Аморфные тела Любое вещество может находиться в 3-х агрегатных состояниях, в зависимости от условий (температуры и давления) Плазма

Слайд 3

Кристаллы- твердые тела, атомы или молекулы которых занимают определенные, упорядоченные положения в пространстве
В кристаллических телах частицы располагаются в строгом порядке, образуя пространственные периодически повторяющиеся структуры во всем объеме тела (дальний порядок) Для наглядного представления таких структур используются пространственные кристаллические решетки, в узлах которых располагаются центры атомов или молекул данного вещества. Чаще всего кристаллическая решетка строится из ионов (положительно и отрицательно заряженных) атомов, которые входят в состав молекулы данного вещества.

Слайд 4

Кристаллы
Плавятся при определенной температуре (температуре плавления) Свойства кристалла зависят от типа кристаллической решетки
Монокристалл – это одиночный кристалл Физические свойства: 1)Правильная геометрическая форма 2)Постоянная температура плавления.

Слайд 5

Кристаллические решетки
Молекулярная Атомная Металлическая Ионная
В узлах располагаются молекулы. Между ними действуют слабые силы притяжения, поэтому вещества летучи, у них низкие температуры плавления и кипения, малая твердость. Лед, йод. В узлах находятся отдельные атомы. Связи между ними самые прочные, поэтому вещества самые твердые, в воде не растворяются, у них высокие температуры плавления и кипения. Алмаз (углерод) В узлах находятся атомы металлов, легко переходящие в ионы, при отдаче электронов в общее пользование. Вещества ковкие, пластичные, имеют металлический блеск, высокую тепло- и электропроводность В узлах находятся положительные и отрицательные ионы. Связь между ними прочная, поэтому вещества обладают высокой твердостью, тугоплавкостью, нелетучие, но многие могут растворяться в воде. Хлорид натрия (соль)

Слайд 6

Кристаллы

Слайд 7

Колумбийский изумруд
Шапка Мономаха

Слайд 8

Поликристаллы
Поликристалл висмута
Аметист(разновидность кварца)
Поликристаллы – это твёрдые тела, состоящие из большого числа маленьких кристалликов. Примеры: металлы, кусочек сахара.

Слайд 9

Анизотропия кристалла- зависимость физических свойств от направления внутри кристалла
Различная механическая прочность по разным направлениям (слюда, графит) Разные тепло – и электро- проводимости Различные оптические свойства кристалла (разная преломляемость света - кварц) Все кристаллические тела анизотропны

Слайд 10

Аморфные тела
Это твёрдые тела, где сохраняется только ближний порядок в расположении атомов. (Кремнезём, смола, стекло, канифоль, сахарный леденец) . Они не имеют постоянной температуры плавления и обладают текучестью. При низких температурах они ведут себя подобно кристаллическим телам, а при высокой подобны жидкостям.

Слайд 11

Аморфные тела изотропны, физические свойства одинаковы по всем направлениям
Аморфный, окаменелый древесный сок

Слайд 12

Жидкие кристаллы
Обладают одновременно свойствами кристалла и жидкости (анизотропией и текучестью) Жидкие кристаллы – в основном органические вещества, молекулы которых имеют длинную нитевидную форму или форму плоских пластин

Слайд 13

Жидкости
В жидкостях наблюдается ближний порядок - упорядоченное относительное расположение (или взаимная ориентация в жидких кристаллах) соседних частиц жидкости внутри малых ее объемов

Слайд 14

Жидкости
Строение сходно со строением аморфных тел Отличие: обладают большой текучестью

Слайд 15

Жидкость
Поверхностные явления – это явления, связанные с существованием у жидкости свободной поверхности. Избыточная энергия, которой обладают молекулы поверхностного слоя по сравнению с молекулами в толще жидкости, называется поверхностной (избыточной) энергией. Удельная поверхностная энергия - отношение поверхностной энергии к площади поверхности σ= Е пов/s [σ]=1 Дж/м2

Слайд 16

На поверхности жидкости остается такое количество молекул, при котором ее площадь остается минимальной для данного объема жидкости. Капли жидкости принимают форму, близкую к шарообразной, при которой площадь поверхности минимальна. Собственная форма - шарообразная Поверхностное натяжение-явление вызванное притяжением молекул поверхностного слоя к молекулам внутри жидкости. Сила поверхностного натяжения- сила, направленная по касательной к поверхности жидкости, перпендикулярно участку контура, ограничивающего поверхность, в сторону ее сокращения.

Слайд 1

Описание слайда:

Слайд 2

Описание слайда:

Слайд 3

Описание слайда:

Слайд 4

Описание слайда:

Слайд 5

Описание слайда:

Слайд 6

Описание слайда:

Слайд 7

Описание слайда:

Слайд 8

Описание слайда:

Слайд 9

Описание слайда:

Проделаем опыт. Нам понадобятся кусок пластилина, стеариновая свеча и электрокамин. Поставим пластилин и свечу на равных расстояниях от камина. По прошествии некоторого времени часть стеарина расплавится (станет жидкостью), а часть - останется в виде твердого кусочка. Пластилин за то же время лишь немного размягчится. Еще через некоторое время весь стеарин расплавится, а пластилин - постепенно "разъедется" по поверхности стола, все более и более размягчаясь Проделаем опыт. Нам понадобятся кусок пластилина, стеариновая свеча и электрокамин. Поставим пластилин и свечу на равных расстояниях от камина. По прошествии некоторого времени часть стеарина расплавится (станет жидкостью), а часть - останется в виде твердого кусочка. Пластилин за то же время лишь немного размягчится. Еще через некоторое время весь стеарин расплавится, а пластилин - постепенно "разъедется" по поверхности стола, все более и более размягчаясь

Слайд 10

Описание слайда:

Слайд 11

Описание слайда:

Проделаем следующий опыт. В стеклянную воронку бросим кусок смолы или воска и оставим в теплой комнате. По прошествии примерно месяца окажется, что воск принял форму воронки и даже начал вытекать из нее в виде "струи" (см. рисунок). В противоположность кристаллам, которые почти вечно сохраняют собственную форму, аморфные тела даже при невысоких температурах обладают текучестью. Поэтому их можно рассматривать как очень густые и вязкие жидкости. Проделаем следующий опыт. В стеклянную воронку бросим кусок смолы или воска и оставим в теплой комнате. По прошествии примерно месяца окажется, что воск принял форму воронки и даже начал вытекать из нее в виде "струи" (см. рисунок). В противоположность кристаллам, которые почти вечно сохраняют собственную форму, аморфные тела даже при невысоких температурах обладают текучестью. Поэтому их можно рассматривать как очень густые и вязкие жидкости.

Слайд 12

Описание слайда:

Слайд 13

Описание слайда:

Слайд 14

Описание слайда:

Слайд 15

Описание слайда:

Слайд 16

Описание слайда:

Слайд 17

Описание слайда:

Слайд 18

Описание слайда:

Слайд 19

Описание слайда:

Слайд 20

Описание слайда:

Слайд 21

Описание слайда:

Слайд 22

Описание слайда:

Слайд 23

Описание слайда:

Слайд 24

Описание слайда:

Слайд 25

Описание слайда:

Слайд 26

Описание слайда:

Слайд 27

Описание слайда:

Слайд 28

Описание слайда:

Слайд 29

Описание слайда:

Слайд 30

Описание слайда:

Слайд 31

Описание слайда:

Все деформации твёрдых тел сводятся к растяжению (сжатию) и сдвигу. При упругих деформациях форма тела восстанавливается, а при пластических не восстанавливается. Все деформации твёрдых тел сводятся к растяжению (сжатию) и сдвигу. При упругих деформациях форма тела восстанавливается, а при пластических не восстанавливается. Тепловое движение вызывает колебания атомов (или ионов), из которых состоит твёрдое тело. Амплитуда колебаний обычно мала по сравнению с межатомными расстояниями, и атомы не покидают своих мест. Поскольку атомы в твёрдом теле связаны между собой, их колебания происходят согласованно, так что по телу с определённой скоростью распространяется волна.

Слайд 33

Описание слайда:

Слайд 34

Описание слайда:






Много лет назад в Петербурге на одном из неотапливаемых складов лежали большие запасы белых оловянных блестящих пуговиц. И вдруг они начали темнеть, терять блеск и рассыпаться в порошок. За несколько дней горы пуговиц превратились в груду серого порошка. "Оловянная чума" - так прозвали эту «болезнь» белого олова. А это была всего лишь перестройка порядка атомов в кристаллах олова. Олово, переходя из белой разновидности в серую, рассыпается в порошок.


И белое и серое олово это кристаллы олова, но при низкой температуре изменяется их кристаллическая структура, а в результате меняются физические свойства вещества. И белое и серое олово это кристаллы олова, но при низкой температуре изменяется их кристаллическая структура, а в результате меняются физические свойства вещества.












Анизотропия наблюдается в основном в монокристаллах. В поликристаллах (например, в большом куске металла) анизотропия в обычном состоянии не проявляется. Поликристаллы состоят из большого количества мелких кристаллических зерен. Хотя каждый из них обладает анизотропией, но за счет беспорядочности их расположения поликристаллическое тело в целом утрачивает анизотропию.








Нарушить порядок расположения в кристалле частицы можно, только если он начал плавиться. Пока есть порядок частиц, есть кристаллическая решетка - существует кристалл. Нарушился строй частиц - значит, кристалл расплавился - превратился в жидкость, или испарился - перешел в пар.

Класс: 10

Тип урока: объяснение нового материала

Цели урока:

  • Обучающие: повторить и систематизировать знания о свойствах кристаллов, рассмотреть особенности аморфных тел, провести сравнение, ввести понятия «изотропия», «анизотропия», «поликристалл», «монокристалл».
  • Развивающие: развитие интереса к физике и математике, развитие логического мышления, внимания, памяти, самостоятельности при поиске решения.
  • Воспитательные: формирование научного мировоззрения, воспитание аккуратности, взаимопомощи.

Средства обучения:

  • Учебник «Физика. 10 класс» Генденштейн Л.Э.
  • Сборник задач по физике. Генденштейн Л.Э.
  • Проектор, компьютер, видеоматериалы (Приложение 1).
  • Демонстрационное оборудование – модель кристаллической решетки, образцы кристаллов слюды, кварца.
  • Лабораторное оборудование – микроскопы, образцы веществ – соль, сахар, сахарный леденец.

Методы обучения:

  • Словесный (объяснение учителя)
  • Наглядный (видео)
  • Практический (опытное исследование – наблюдение в микроскоп, решение задач)

План урока:

  1. Орг. момент
  2. Актуализация и мотивация знаний (повторение)
  3. Объяснение нового материала
  4. Закрепление
  5. Подведение итогов. Домашнее задание

Ход урока

1. Орг. момент.

2. Напомню, что мы продолжаем изучать молекулярно-кинетическую теорию.

– В чем состоит основная задача МКТ? (Ответ: МКТ объясняет свойства макроскопических тел на основе знаний о строении вещества и поведении молекул).

Мы рассмотрели подробно на предыдущих уроках особенности газов и жидкостей. Для завершения МКТ нам необходимо рассмотреть особенности твердых тел.

– Какие особенности о строении твердых тел нам известны из курса физики? (Ответы: молекулы расположены очень близко друг к другу, силы взаимодействия между молекулами велики, молекулы совершаю колебания около своих положений равновесия).

– В чем отличия в строении жидкостей и твердых тел? (Ответ: в силах взаимодействия между молекулами, в расположении частиц, в скоростях и видах движения молекул).

Итак, главная особенность – это правильное расположение атомов, т.е. наличие кристаллической решетки, поэтому большинство твердых тел называют кристаллическими. Однако, существует еще одна группа твердых тел, о которых мы раньше не говорили – это аморфные тела. Итак, тема сегодняшнего урока «Кристаллические и аморфные тела». (Слайд 1) (Приложение 1)

3. Некоторые свойства кристаллов мы знаем. Вспомните, что можно сказать о форме и объеме твердых тел? (Ответ: сохраняются и форма, и объем)

Для систематизации знаний о твердых телах и для сравнения кристаллов и аморфных тел в процессе урока будем заполнять следующую таблицу (таблица приготовлена заранее на доске или можно вывести на экран через компьютер):

Начертите таблицу в тетради.

В колонку «Кристаллические тела» впишите, что нам известно о форме и объеме кристаллических тел.

(Слайд 2)

На рисунке показаны кристаллические решетки различных веществ. Обратите внимание на то, что линии, соединяющие положения атомов, образуют правильные геометрические фигуры: квадраты, прямоугольники, треугольники, 6-угольники и т.д.

Т.е. кристаллы – это твердые тела, атомы которых расположены в определенном порядке (записать в таблицу).

Правильное расположение атомов хорошо демонстрирует модель кристаллической решетки.

Демонстрация модели кристаллической решетки графита.

(Слайд 3) Из уроков химии вы знаете, что кристаллические решетки могут состоять не только из нейтральных атомов, но и из ионов. На рисунке – ионные кристаллические решетки поваренной соли и хлорида цезия. При этом мы опять же наблюдаем правильное расположение частиц в пространстве.

(Слайд 4) Бывает, что одни и те же атомы образуют разные вещества с абсолютно разными свойствами в зависимости от вида кристаллической решетки: слева – слоистая решетка графита (модель которого мы только видели). Графит – мягкое, непрозрачное, проводящее ток вещество. Справа – алмаз с каскадной решеткой, состоящей из тех же атомов углерода. Алмаз – прозрачный кристалл, диэлектрик, самое прочное вещество в природе.

(Слайд 5) Графит и алмаз.

Следствием правильного расположения атомов является наличие плоских граней и правильная геометрическая форма кристаллов (независимо от размера), симметрия. Обратите внимание на это на следующих слайдах:

(Слайд 6) Йодид свинца. Размеры кристалликов разные, а форма повторяется. Кроме того, если кристалл расколется на части, то все они будут такой же формы.

(Слайд 7) Алмазы

(Слайд 9) Снежинки.

(Слайд 10) Кварц.

Исследование. У вас на столе находятся различные вещества и микроскопы. Настройте свет в микроскопе, положите на предметное стеклышко крупинки соли и рассмотрите их. Что из перечисленных уже особенностей кристаллов подтверждается при наблюдении кристалликов соли? (Правильная форма в виде кубиков, видны плоские грани).

Внутри кристалла расстояния между атомами в разных направлениях разные, поэтому и взаимодействия между атомами различны. Давайте подумаем, к чему это приводит.

Еще раз посмотрим на модель решетки графита.

– Где сильнее связаны атомы: в отдельных слоях или между слоями? (Ответ: в отдельных слоях, так как частицы ближе расположены друг к другу).

– Как это может повлиять на прочность кристалла? (Ответ: прочность скорее всего будет отличаться).

– В каком направлении будет быстрее передаваться тепло – вдоль слоя или в перпендикулярном направлении? (Ответ: вдоль слоя) .

Итак, физические свойства различны по разным направлениям. Это называется анизотропией . Запишем в таблицу: кристаллы анизотропны , т.е. их физические свойства зависят от выбранного в кристалле направления (теплопроводность, электропроводность, прочность, оптические свойства). Это основное свойство кристаллов!!

Демонстрация кусочков слюды и ее способности легко расслаиваться, но при этом трудно разорвать пластинку слюды поперек слоев.

(Слайд 11) Рассмотрим еще одну особенность кристаллов.

– Чем отличаются эти два объекта? (Ответ: слева сахар в виде отдельных крупинок, а справа – сросшиеся кристаллики).

Одиночные кристаллы называются монокристаллами , а множество спаянных друг с другом кристалликов – поликристаллы (записать в таблицу).

(Слайд 12) Примеры монокристаллов – драгоценные камни (сапфиры, рубины, алмазы). Так выглядит кристалл рубина в природе.

(Слайд 13) Для ювелирных изделий им придают дополнительную огранку. К поликристаллам относятся все металлы.

(Слайд 14) А здесь сахар в трех состояниях: сахарный песок, сахар-рафинад, и сахарный леденец.

– Есть ли среди этих образцов монокристаллы? (Ответ: сахарный песок) .

– Есть ли среди этих образцов поликристалл? (Ответ: сахар-рафинад) .

– Можем ли мы утверждать, что леденец имеет правильную форму? Есть ли у него плоские грани? (Ответы: нет).

Исследование. Рассмотрите в микроскоп крупинки сахара и кусочки леденца. Что можно сказать о форме крупинок, о наличии плоских граней, о повторяемости формы в разных крупинках? (ответ: у крупинок сахара есть все признаки кристаллов, у крупинок леденца их нет).

(Слайд 15) Вот фотографии, сделанные с помощью микроскопа: слева – крупинка сахарного песка, справа – кусочек леденца. Обратите внимание на скол леденца.

В отличие от кристаллов сахарный леденец может и раскалываться и размягчаться, постепенно переходя в жидкое состояние, при этом меняя форму. Все аморфные тела – это вещества, атомы которых расположены в относительном порядке, нет строгой повторяемости пространственной структуры. (Слайд 16) Следствием этого является изотропия – одинаковые физические свойства по разным направлениям (записать в таблицу).

(Слайд 17) Еще один пример вещества в кристаллическом и аморфном состояниях (песок и стекло). Важно, что из-за разных расстояний между атомами даже в соседних ячейках, разрушаться пространственная решетка не будет при определенной температуре, как это происходит у кристаллов. У аморфных тел существует промежуток температур, при котором вещество плавно переходит в жидкое состояние.

(Слайд 18) Примерами аморфных тел являются смола, канифоль, янтарь, пластилин и другие.

4. Для закрепления материала отвечаем на вопросы № 597, № 598 из сборника задач Рымкевича А.П., № 17.26, 17.30 из сборника задач Генденштейна Л.Э.

Если остается время – решаем задачи из ЕГЭ (А10, А11).

5 . Домашнее задание: заполнить до конца таблицу, §30.

Кристаллические и аморфные тела Выполнила: Готманова Елена Анатольевна, учитель физики МОУ «СОШ № 15» р.п. Первомайский Щекинского района 14.01.2008 г. АННОТАЦИЯ Презентацию можно использовать частично на уроках физики в 8 классе и полностью в 10 классе; на внеклассных мероприятиях (неделях физики, семинарах, на уроках с межпредметными связями) Выполнена в программе Microsoft PowerPoint Объем работы - , количество слайдов - 16 Цели и задачи Познакомить учащихся со строением и свойствами твердых тел; Показать роль физики твердого тела в создании материалов с заранее заданными свойствами; Показать формулу кристаллов, симметрию пространственных кристаллических решеток; Показать практическое значение твердых тел Методические рекомендации учителю Данную презентацию можно использовать в 10 классе и при двух, и при трех часах, отведенных на тему «Твердые тела»; Для реализации дифференцированного обучения решение качественных задач может быть предложено как всему классу, так и частично, ученикам с разным уровнем знаний; В 8 классе может быть использованы материалы презентации, касающиеся изучения кристаллических тел. Методические рекомендации учащимся Данная презентация поддерживает интерес к изучению физики; Использую эту презентацию, вы расширяете свой кругозор, развиваете абстрактное мышление; Данная презентация позволяет закреплять навыки самообразования. Особенности внутреннего молекулярного строения твердых тел. Их свойства Кристалл – устойчивое, упорядочное образование частиц в твердом состоянии. Кристаллы отличаются пространственной периодичностью всех свойств. Основные свойства кристаллов: сохраняет форму и объем при отсутствии внешних воздействий, обладает прочностью, определенной температурой плавления и анизотропией (различием физических свойств кристалла от выбранного направления). Наблюдение кристаллической структуры некоторых веществ соль кварц слюда алмаз Монокристаллы и поликристаллы Кристаллическую структуру имеют металлы. Обычно металл состоит из огромного количества сросшихся друг с другом маленьких кристалликов. Твердое тело, состоящее из большого числа маленьких кристалликов, называют поликристаллическими. Одиночные кристаллы называют монокристаллами. Большинство кристаллических тел – поликристаллы, так как они состоят из множества сросшихся кристаллов. Одиночные кристаллы – монокристаллы имеют правильную геометрическую форму и их свойства различные в зависимости от направления Историческая справка 1867 г. русский инженер А.В. Гадолин впервые доказал, что кристаллы могут обладать 32 видами симметрии Знаменитый русский кристаллограф Е.С. Федоров доказал, что могут существовать только 230 способов построения кристалла Ученные выяснили, правильная форма кристалла обусловлена тесным, упорядоченным расположением частиц в кристалле Демонстрация различных моделей кристаллических решеток алмаз графит соль Обратите внимание на одинаковое расстояние между частицами соли по определенным направлениям Модели кристаллических решеток графита и алмаза являются примером полиморфизма, когда одно и то же вещество может иметь различные типы упаковок Демонстрация доказательств свойств аморфных тел 1. Аморфные тела не имеют определенной температуры плавления парафин стекло 2. Аморфные тела изотропны, например: парафин пластилин Прочность данных тел не зависит от выбора направления испытания Демонстрация доказательств свойств аморфных тел 3. При кратковременном воздействии проявляют упругие свойств. Например: резина воздушный шарик 4. При продолжительном внешнем воздействии аморфные тела текут. Например: парафин в свече. 5. С течением времени мутнеют (н/р: стекло) и расстекловываются (н/р: леденец засахаривается), что связано с появлением маленьких кристалликов, оптические свойства которых отличаются от свойств аморфных тел Решение качественных задач Шар, выполненный из монокристалла, при нагревании может изменить не только свой объем, но и форму. Почему? Кубик из стекла и кубик из монокристалла кварца, опущенный в горячую воду. Сохраняет ли кубики свою форму? Почему в природе не существует кристаллов шарообразной формы? Почему в мороз снег скрипит под ногами? Почему в таблицах температур плавления различных веществ нет температуры плавления стекла? Итоги Учащиеся познакомились со строением и свойствами твердых тел; Ознакомились с роль физики твердого тела в создании материалов с заранее заданными свойствами; Учащиеся увидели формулу кристаллов, симметрию пространственных кристаллических решеток; Посмотрели практическое значение твердых тел Список литературы 1. 2. 3. О.Ф. Кабардин Физика. Справочные материалы.Кабардин О.Ф.- М. «Просвещение», 1988, 367 с. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский – Физика. Учебник для 10 класса общеобразовательных учреждений. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. - Литература, «Просвещение», 2007, 366 с. И.Г. Власова, А.А. Витебская Решение задач по физике. Справочник школьника. – Власова И.Г., Витебская А.А., Филологическое общество «Слово», АСТ, Ключ-С, Центр гуманитарных наук при факультете журналистики МГУ им. М.В. Ломоносова, -М., 1997, 638 с. Ответы на качественные задачи Монокристалл – это одиночный кристалл, у которого физические свойства зависят от направления внутри кристалла, то есть обладает анизотропией. Поэтому шар, выполненный из монокристалла, при нагревании может расширяться по различным направлениям неодинаково, следовательно, может изменить не только свой объем, но и форму. Стекло является аморфным твердым телом и обладает изотропией. Монокристаллы анизотропны. Следовательно, вследствие анизотропии теплового расширения (по разным направлениям тепловое расширение неодинаково) куб из кварца примет форму параллелепипеда. Кубик из стекла своей формы не изменит. Все монокристаллы анизотропны, то есть физические свойства зависят от направления внутри кристаллов. Следовательно, рост кристаллов неодинаков по разным направлениям, и поэтому нельзя вырастить кристалл шарообразной формы. Снег состоит из огромного числа снежинок-кристалликов. В мороз снег скрипит под ногами, потому что ломается сотни тысяч кристалликов пол действием силы ноги. Это связано с тем, что стекло является аморфным веществом, у которого нет определенной температуры плавления.

Поделиться: